«Википеди» ирĕклĕ энциклопединчи материал
Кронекер хутлавлăхĕ — хуть те мĕнле хапаллă матрицăсемпе те тăвакан бинарлă операци , ăна
⊗
{\displaystyle \otimes }
символпа паллă тăваççĕ. Асăннă операци хыççăн, результат пек, блокла матрица пулать.
Кронекер хутлавлăхне матрицăсене хутлассипе пăтраштармалла мар. Операцие Леопольд Кронекер нимĕç математикĕ ячĕпе çапла калаççĕ.
Енчен те A — m ×n хапаллă матрица, B — p ×q хапаллă матрица пулсан, вара çавсен Кронекер хутлавлăхĕ mp ×nq хапаллă блокла матрица пулать
A
⊗
B
=
[
a
11
B
⋯
a
1
n
B
⋮
⋱
⋮
a
m
1
B
⋯
a
m
n
B
]
.
{\displaystyle A\otimes B={\begin{bmatrix}a_{11}B&\cdots &a_{1n}B\\\vdots &\ddots &\vdots \\a_{m1}B&\cdots &a_{mn}B\end{bmatrix}}.}
Сарăмласа кăтартсан
A
⊗
B
=
[
a
11
b
11
a
11
b
12
⋯
a
11
b
1
q
⋯
⋯
a
1
n
b
11
a
1
n
b
12
⋯
a
1
n
b
1
q
a
11
b
21
a
11
b
22
⋯
a
11
b
2
q
⋯
⋯
a
1
n
b
21
a
1
n
b
22
⋯
a
1
n
b
2
q
⋮
⋮
⋱
⋮
⋮
⋮
⋱
⋮
a
11
b
p
1
a
11
b
p
2
⋯
a
11
b
p
q
⋯
⋯
a
1
n
b
p
1
a
1
n
b
p
2
⋯
a
1
n
b
p
q
⋮
⋮
⋮
⋱
⋮
⋮
⋮
⋮
⋮
⋮
⋱
⋮
⋮
⋮
a
m
1
b
11
a
m
1
b
12
⋯
a
m
1
b
1
q
⋯
⋯
a
m
n
b
11
a
m
n
b
12
⋯
a
m
n
b
1
q
a
m
1
b
21
a
m
1
b
22
⋯
a
m
1
b
2
q
⋯
⋯
a
m
n
b
21
a
m
n
b
22
⋯
a
m
n
b
2
q
⋮
⋮
⋱
⋮
⋮
⋮
⋱
⋮
a
m
1
b
p
1
a
m
1
b
p
2
⋯
a
m
1
b
p
q
⋯
⋯
a
m
n
b
p
1
a
m
n
b
p
2
⋯
a
m
n
b
p
q
]
.
{\displaystyle \mathbf {A} \otimes \mathbf {B} ={\begin{bmatrix}a_{11}b_{11}&a_{11}b_{12}&\cdots &a_{11}b_{1q}&\cdots &\cdots &a_{1n}b_{11}&a_{1n}b_{12}&\cdots &a_{1n}b_{1q}\\a_{11}b_{21}&a_{11}b_{22}&\cdots &a_{11}b_{2q}&\cdots &\cdots &a_{1n}b_{21}&a_{1n}b_{22}&\cdots &a_{1n}b_{2q}\\\vdots &\vdots &\ddots &\vdots &&&\vdots &\vdots &\ddots &\vdots \\a_{11}b_{p1}&a_{11}b_{p2}&\cdots &a_{11}b_{pq}&\cdots &\cdots &a_{1n}b_{p1}&a_{1n}b_{p2}&\cdots &a_{1n}b_{pq}\\\vdots &\vdots &&\vdots &\ddots &&\vdots &\vdots &&\vdots \\\vdots &\vdots &&\vdots &&\ddots &\vdots &\vdots &&\vdots \\a_{m1}b_{11}&a_{m1}b_{12}&\cdots &a_{m1}b_{1q}&\cdots &\cdots &a_{mn}b_{11}&a_{mn}b_{12}&\cdots &a_{mn}b_{1q}\\a_{m1}b_{21}&a_{m1}b_{22}&\cdots &a_{m1}b_{2q}&\cdots &\cdots &a_{mn}b_{21}&a_{mn}b_{22}&\cdots &a_{mn}b_{2q}\\\vdots &\vdots &\ddots &\vdots &&&\vdots &\vdots &\ddots &\vdots \\a_{m1}b_{p1}&a_{m1}b_{p2}&\cdots &a_{m1}b_{pq}&\cdots &\cdots &a_{mn}b_{p1}&a_{mn}b_{p2}&\cdots &a_{mn}b_{pq}\end{bmatrix}}.}
Енчен те A тата B , — килĕшÿллĕн, — линилле V 1 → W 1 тата V 2 → W 2 трансформацисене кăтартаççĕ пулсан, вара A ⊗ B икĕ V 1 ⊗ V 2 → W 1 ⊗ W 2 куçарăвăн тензорла хутлавĕ пулать.
Тĕслĕх
—
[
1
2
3
4
]
⊗
[
0
5
6
7
]
=
[
1
⋅
0
1
⋅
5
2
⋅
0
2
⋅
5
1
⋅
6
1
⋅
7
2
⋅
6
2
⋅
7
3
⋅
0
3
⋅
5
4
⋅
0
4
⋅
5
3
⋅
6
3
⋅
7
4
⋅
6
4
⋅
7
]
=
[
0
5
0
10
6
7
12
14
0
15
0
20
18
21
24
28
]
{\displaystyle {\begin{bmatrix}1&2\\3&4\\\end{bmatrix}}\otimes {\begin{bmatrix}0&5\\6&7\\\end{bmatrix}}={\begin{bmatrix}1\cdot 0&1\cdot 5&2\cdot 0&2\cdot 5\\1\cdot 6&1\cdot 7&2\cdot 6&2\cdot 7\\3\cdot 0&3\cdot 5&4\cdot 0&4\cdot 5\\3\cdot 6&3\cdot 7&4\cdot 6&4\cdot 7\\\end{bmatrix}}={\begin{bmatrix}0&5&0&10\\6&7&12&14\\0&15&0&20\\18&21&24&28\end{bmatrix}}}
.
Хорн Р. Матричный анализ: Пер. с англ. / Р. Хорн, Ч. Джонсон. – М.: Мир, 1989.– 655 с.
Векторсем тата матрицăсем
Векторсем
Тĕп ăнлавсем Векторсен тĕсĕсем Векторсемпе операцилени Уçлăхсен тĕсĕсем
Матрицăсем
Урăхисем